Journal of Organometallic Chemistry, 399 (1990) 361–364 Elsevier Sequoia S.A., Lausanne JOM 21088

Phase-transfer catalyzed base hydrolysis of Pt(Ph₂PCH₂PPh₂)Cl₂. Synthesis and crystal structure of the trinuclear compound [Pt₃(μ_3 -O)(μ - η^2 -PPh₂O)₃(PPh₂Me)₃]PF₆ · CHCl₃

Ivan J.B. Lin *, J.S. Lai

Department of Chemistry, Fu Jen Catholic University, Hsinchuang, 24205 Taipei (Taiwan)

Ling-Kang Liu * and Y.S. Wen

Institute of Chemistry, Academia Sinica, Nankang, 10767 Taipei (Taiwan)

(Received April 20th, 1990)

Abstract

Base hydrolysis of Pt(dppm)Cl₂, (dppm = Ph₂PCH₂PPh₂), under phase-transfer-catalysis (PTC) conditions gave the triplatinum compound [Pt₃(μ_3 -O)(μ - η^2 -PPh₂O)₃(PPh₂Me)₃]PF₆. This trinuclear compound can be transformed to {Pt(PPh₂Me)[PPh₂(OH)]Cl₂}, which upon treating with aqueous NaOH under PTC conditions produced a dimeric compound [Pt(μ -OH)(PPh₂Me)(PPh₂O)]₂. The trinuclear compound has been characterized by various spectroscopic methods and X-ray crystallography.

Introduction

The use of phase-transfer-catalysis (PTC) in organometallic chemistry has received much attention [1]. We have recently reported [2] that the reaction of $Pt(dppm)Cl_2$ (dppm = $Ph_2PCH_2PPh_2$) with [S(O)Me_3]Cl under basic PTC conditions gives the complex { $Pt(PPh_2Me)[PPh_2(OH)][(CH_2)_2S(O)Me]$ }Cl, in which a dppm ligand is hydrolyzed to produce PPh_2Me and $PPh_2(OH)$ ligands. We have also noted that the base hydrolysis of $Pt(dppm)Cl_2$ also occurs under PTC conditions, and more than two products have been observed. Base hydrolysis of dppm is an important chemistry for Pt-dppm complexes, especially under mild PTC conditions. Recently it has been reported [3] that the reaction of $Pt(dppm)Cl_2$ with aqueous OH^- in dmso, MeCN or water produced *cis* and *trans* [$Pt(\mu OH)(PPh_2O)(PPh_2Me)]_2$, 3. Since we have obtained a novel trinuclear species instead of 3 upon the hydrolysis of $Pt(dppm)Cl_2$ under PTC/OH^- conditions, we wish to report our preliminary results on this matter [4*].

^{*} Reference number with asterisk indicates a note in the list of references.

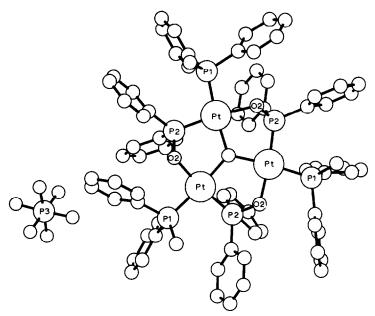
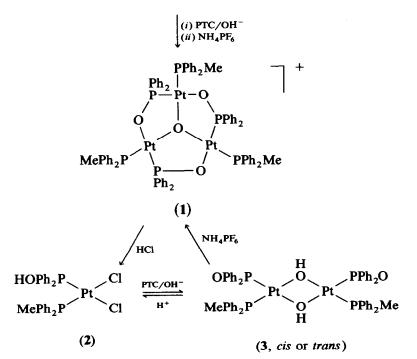


Fig. 1. The molecular structure of compound 1.


Experimental

Compound $[Pt_3(\mu_3-O)(\mu-\eta^2-PPh_2O)_3(PPh_2Me)_3]PF_6 \cdot CHCl_3$, 1, was obtained (45% yield as crystalline material) from the reaction of Pt(dppm)Cl₂ (0.35 mmol in 15 ml CH_2Cl_2) with aqueous KOH (1.8 N, 5 ml) in the presence of n-Bu₄NCl, followed by anion exchange with NH_4PF_6 and recrystallization from CHCl₃. The rate of hydrolysis reaction depends on the amount of phase-transfer (PT) catalyst and the concentration of KOH. This PT catalyzed dppm hydrolysis reaction is facile and the workup is easy. Compound 1 has been characterized. Anal. Found: C. 43.77; H, 3.40. C₇₅H₆₉F₆O₄P₇Pt₃ · CHCl₃ calcd: C, 44.11; H, 3.38%. FAB mass spectrum 1804 [$M - (PF_6 + CHCl_3)$]. M.p. 189–192°C. λ_M CHCl₃ was 82 ohm⁻¹ $cm^2 mol^{-1}$. ¹H NMR spectrum of 1 in CDCl₃ shows the typical 1:1:4:1:1 signal assignable to the coordinated PPh₂Me. ³¹P{H} spectrum of 1 shows two doublets $(\delta = 7.75 \text{ and } 88.12 \text{ ppm}, \text{ relative to } 85\% \text{ H}_3 \text{PO}_4, J = 16.7 \text{ Hz}) \text{ with } ^{195}\text{Pt} \text{ satellite}$ (J = 3687 and 4113 Hz respectively). The small ${}^{31}P - {}^{31}P$ coupling constant and large ${}^{31}P - {}^{195}Pt$ coupling constant suggest that PPh₂Me is *cis* to PPh₂O. The molecular structure of 1 was further characterized by single crystal X-ray structure analysis. The colorless crystal is trigonal, space group R3c with a = 15.434(2), c = 54.436(6)Å; V + 11229.04 Å³; $M_r = 2072.13$; Z = 6; $D_c = 1.839$ g/cm³, F(000) = 6010.74; Cu- K_{α} radiation, $\lambda = 1.54056$ Å, $\mu = 134$ cm⁻¹. Anisotropic least squares refinement for 2108 independent reflections with $I_o \ge 2.0\sigma(I_o)$ gives R = 0.026. An ORTEP plot of the molecular structure is shown in Fig. 1.

Results and discussion

The molecular geometry of compound 1 consists of three platinum atoms and each platinum atom has square planar geometry. The three planes are triply bridged by an oxygen atom in a propeller arrangement, and each platinum atom is further bridged consecutively by two P-O fragments, thus forming a large cyclic compound. The triply bridging Pt-O1 distance (2.088(1) Å) is comparable to the P-O bridging Pt-O2 distance (2.079(7) Å). The P2-O2 distance (1.545(12) Å) is longer than the P=O bond reported for $[Pt(\mu-NH_2)(PPh_2O)(PPh_3)]_2$ (1.526(11) Å) [5]. A compound consisting of three platinum atoms triply bridged by an oxygen atom in the centre has been reported [6], and a bridging P-O is also known for other metals [7]. However, to our knowledge, this is the first platinum complex containing a planar Pt₃O moiety with bridging P-O ligand, and this is the first such type of molecule obtained by the PTC technique.

Treating compound 1 with concentrated HCl gives the monomeric compound $\{Pt(PPh_2Me)[PPh_2(OH)]Cl_2\}$, 2. Treating compound 2 with aqueous NaOH under PTC conditions produces compound 3 [3], which upon the addition of NH₄PF₆ produces compound 1 again. The interconversion of compounds 1, 2 and 3 under various conditions are depicted in Scheme 1. Compound 1 also reacts readily with ligands such as dithiolates and phosphines. It is a convenient way to synthesize complexes containing different phosphine ligands. An extensive chemistry is expected and is currently under investigation.

Pt(dppm)Cl₂

Scheme 1.

 $Pt(dppm)Cl_2$ is a very common compound both as a starting material and as a catalyst. The facile base hydrolysis under mild PTC conditions and the rich chemistry expected for compound 1 deserve attention.

Acknowledgements

We thank the National Science Council of Taiwan, Republic of China for financial support.

References and note

- R.F. Wu, I.J.B. Lin, G.H. Lee, M.C. Cheng, and Y. Wang, Organometallics, 9 (1990) 126; I.J.B. Lin, H.Y.C. Lai, S.C. Wu, L. Hwan, J. Organomet. Chem., 304 (1986) C24; H. des Abbayes, Isr. J. Chem., 26 (1985) 246; H. Alper, in C.M. Starks (Ed.), Phase Transfer Catalysis, New Chemistry, Catalysts and Applications, ACS Symposium Series No. 326; American Chemical Society: Washington, DC, 1987; H. Alper, Adv. Organomet. Chem., 19 (1981) 183.
- 2 I.J.B. Lin, J.S. Lai, and C.W. Liu, Organometallics, 9 (1990) 530.
- 3 P. Bergamini, S. Sostero, O. Traverso, T.J. Kemp and P.G. Pringle, J. Chem. Soc., Dalton Trans., (1989) 2017.
- 4 While presenting this result in the Pacific Basin Conference, Dr. P. Pringle informed us that a protonated trinuclear compound with a BF_4 counter anion has been isolated and characterised at the University of Bristol.
- 5 N.W. Alcock, P. Bergamini, T.J. Kemp, and P.g. Pringle, J. Chem. Soc., Chem. Commun., (1987) 235.
- 6 V.V. Lapkin, T.V. Dubrova, L.K. Shubochkin, M.P. Volynets, E.F. Shubochkina, Koord. Khim., 6 (1980) 1071; CA93(18), 1980, 178636v.
- 7 W. Klaul, and A. Muller, Organometallics, 6 (1987) 1824; W. Klaui, A. Muller, W. Eberspach, R. Boese, and I. Goldberg, J. Am. Chem. Soc., 109 (1987) 164.; B, Klingert, A.L. Rheingold, and H. Werner, Inorg. Chem., 27 (1988) 1354; D.E. Fogg, N.J. Taylor, A. Meyer, and A.J. Carty, Organometallic, 6 (1987) 2252.